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HINTS FOR ASSIGNED EXERCISES 26-41

26.
The field strength and dual field strength tensors
are

Fµν ≡ ∂µAν − ∂νAµ

Gµν ≡ 1
2ε

µνρσFρσ ,

where εµνρσ = 1 (−1) when µνρσ are even (odd)
permutations of 0123, and 0 otherwise. You
may use their explicit elements as given in scsr
Eqs. (62) and (65).
(a.)
By explicit evaluation, show that FµνFµν is pro-
portional to E2 − c2B2, and find the constant
of proportionality. (Because FµνFµν is obvi-
ously a Lorentz scalar, the Lorentz invariance of
E2 − c2B2 is therefore said to be manifest.)
Hint:
Start with scsr Eq. (62) for the Fµν . Use scsr
Eqs. (58) (or the information in the top right
quarter of scsr page 17) to get the Fµν . Now,

FµνFµν = F 00F00 + F 01F01 + . . .+ F 33F33

(16 terms). Add up the terms.
(b.)
By explicit evaluation, show that FµνGµν is
proportional to �E · �B, and find the constant of
proportionality. (Likewise the Lorentz invari-
ance of �E · �B is manifest.)
Hint:
Start with scsr Eq. (65) for the Gµν .
(c.)
What two criteria must (uniform nonzero) �E

and �B satisfy in the lab frame so that, in a dif-
ferent inertial frame, �B is allowed to vanish?
Hint:
If �B is to vanish in one Lorentz frame, can �E · �B
(a Lorentz invariant) be nonzero in any Lorentz
frame? If | �E| is to exceed c| �B| in one Lorentz
frame, can E2 − c2B2 (a Lorentz invariant) be
negative or zero in any Lorentz frame?

27.
Griffiths Problem 12.36.
Hint:
Using the notation employed in class, and divid-
ing through by mc, Griffiths asks you to prove

d

dt
γ�β = γ

(�̇
β + γ2�β(�β · �̇β)) .

Writing γ in terms of β and routinely differen-
tiating the lhs, cancelling the term γ

�̇
β on both

sides, and ignoring the common factor γ3�β, this
reduces to proving

β
dβ

dt
= �β · d

�β

dt
.

To do this, consider d
dt (�β · �β).

28.
You are an indefagitable runner of rest mass m,
whose feet generate a constant force F0 in the x
direction (as observed in the laboratory). This
force causes your (relativistic) momentum to in-
crease linearly with laboratory time t.
(a.)
At t = 0, when you are at rest at the origin,
your feet begin to exert this force. Thereafter,
show that sinh η, where η is your rapidity, is
proportional to t, and find the constant of pro-
portionality.
Hint:
Along x̂, the time derivative of

p = γβmc = cosh η tanh ηmc

is equal to F0.
(b.)
At t = t1, a laser pulse is shot from the origin in
the x direction. How much of a head start t1 do
you require in order for the laser pulse never to
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catch up with you?
Hint:
From part (a.) you know that sinh η = ωt, where
ω is the constant of proportionality that you ob-
tained there. Using cosh2 η − sinh2 η = 1, you
also know the time dependence of cosh η. Tak-
ing the ratio, you know the time dependence of
β = tanh η. Integrate cβ(t) (a perfect differen-
tial) to obtain the runner’s equation of motion

ω
c x(t) =

√
1 + ω2t2 − 1 .

Compare this to the laser pulse’s equation of
motion

ω
c xp(t) = ω(t− t1) .

For what value of t1 will x stay larger than xp

(infinitesimally so when ωt is � 1 but finite)?

29.
At t = 0, a particle of rest mass m and charge
e is at rest at the origin. It accelerates under
the influence of a uniform static electric field
�E = ẑE0.
(a.)
For t > 0, show that the relativistic solution for
z(t) is given by

z(t) =
∫ t

0

cβz(t) dt

βz(t) = tanh η(t)

η(t) = sinh−1 eE0

mc
t .

Hint:
Use the hint for part (a.) of the previous prob-
lem.
(b.)
Suppose instead that, at t = 0, the particle has
an initial momentum �p(0) = x̂p⊥. Show that the
solution for z(t) is the same as in (a.), except
that m is replaced by meff , where

meff =
√

m2 + p2
⊥/c2 .

This says that, under the influence of a uniform
electrostatic field, the longitudinal motion of a
particle with nonzero transverse momentum is
the same as that of a heavier particle with zero

transverse momentum.
Hint:
Why is p⊥ constant? When p⊥ = 0 , the equa-
tion of motion along ẑ is determined by

d

dt
γβmc = eE0 ,

where
γ ≡ 1√

1− β2
=

E

mc2

and E is the particle’s total energy. When
�p⊥ �= 0 , if you can show that

d

dt
γeffβzmeffc = eE0 , (A)

where
γeff ≡ E

meffc2
=

1√
1− β2

z

, (B)

the assertion to be proved will be justified.
To prove Eq. (A), consider the force equation
dpz/dt = eE0 and use the fact that γm =
γeffmeff . To prove Eq. (B), write βz = cpz/E .
(c.)
Under the conditions of part (b.), for t > 0 does
x(t) increase linearly with t? Explain.
Hint:
You have argued that p⊥ = γβxmc is constant.
So βx is constant if γ is constant.

30.
At t = 0, a particle of rest massm and charge e is
at the origin, with initial momentum �p(0) = x̂p⊥.
It accelerates under the influence of a uniform
static magnetic field �B = ẑB0.
(a.)
For t > 0, show that the relativistic solution for
x(t) and y(t) is given by

x(t) =
∫ t

0

cβx(t) dt

y(t) =
∫ t

0

cβy(t) dt

γ⊥mcβx(t) = p⊥ cosωct

γ⊥mcβy(t) = p⊥ sinωct

ωc = − eB0

γ⊥m

γ⊥m =
√

m2 + p2
⊥/c2 .
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Hint:
First, by considering the power �F · c�β and the
nature of the Lorentz force in a pure magnetic
field, show that |�p⊥| and therefore γ⊥ is con-
stant. Show that the Lorentz force equation can
be written

d�β

dt
= (ẑωc)× �β .

This is an equation for (ccw) precession of �β
about ẑ with angular frequency ωc. (Consid-
ering the negative sign of ωc, the precession is
actually cw).
(b.)
Suppose instead that, at t = 0, the particle has
an initial momentum �p(0) = x̂p⊥ + ẑp‖. Show
that the solution for x(t) and y(t) is the same as
in (a.), except that γ⊥ is replaced by γ, where

γm =
√

m2 + p2
⊥/c2 + p2

‖/c
2 .

Hint:
Show that the solution is the same as in part
(a), except that

ωc = −eB0

γm
.

(c.)
Show that the result of (b.) alternatively can be
expressed as the result of (a.) withm replaced by

meff =
√

m2 + p2
‖/c

2 .

This says that, under the influence of a uniform
magnetostatic field, the transverse motion of a
particle with nonzero longitudinal momentum is
the same as that of a heavier particle with zero
longitudinal momentum.
Hint:
Show that

γm =
√

m2
eff + p2

‖/c
2 .

(d.)
Under the conditions of part (b.), for t > 0 does
z(t) increase linearly with t? Explain.
Hint:
Use the fact that p‖ = γβzmc. Are p‖ and γ
both constant?

31.
At t = 0 at the origin of a spherical polar coordi-
nate system in the lab, a point particle of charge
q has velocity βc directed along the ẑ (north po-
lar) axis. It has been moving with that constant
velocity for a long time.
(a.)
Starting with the Coulomb field in the particle’s
rest frame, and using the rules for relativis-
tic transformation of EM fields, show that the
electric field observed in the lab at t = 0 and
�r = (r, θ, φ) is

4πε0 �E = r̂
q

r2

γ

(γ2 cos2 θ + sin2 θ)3/2
,

where as usual γ = 1/
√
1− β2.

Hint:
Work in Cartesian coordinates. Put the observer
in frame S at (x, 0, z), with ẑ the direction of
the charge’s motion. Put the charge at the ori-
gin (x′, y′, z′) = (0, 0, 0) of frame S ′. Write E′

x

and E′
z in terms of x′, y′, and z′. Then trans-

form E′
x, E

′
z, and z′ to frame S. Finally, convert

to spherical polar coordinates in the lab frame.
(b.)
Show that this result is equivalent to Griffiths
Eq. (10.68).
Hint:
In Griffiths’ notation, R is the same as our
�r . Remove a factor γ3 from the denomina-
tor of the answer to part (a.), and substitute
cos2 θ = 1− sin2 θ.

32.
Griffiths Problem 10.9(b).
Hint:
Substitute I(tret) = q0δ(tret) = q0δ(t − R/c) in
Griffiths’ first equation of his solution to Exam-
ple 10.2. Since the integrand is even, integrate
from 0 to ∞ rather than from −∞ to ∞. Using
z =

√
R2 − s2, where s is the cylindrical radial

coordinate, convert the integral over dz to an
integral over dR. Convert the delta function
δ(t− R/c) to δ(R − ct) using the rule δ(f(x)) =
δ(x)/|df/dx| (true if f = 0 when x = 0). The
delta function trivializes the integration. Differ-
entiate your answer for �A to get �E and �B.
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33.
The general expression for the electromagnetic
fields arising from a point particle of charge q

moving with velocity �βc and acceleration �̇
βc is

�E = �Ev + �Ea with

�Ev =
q

4πε0

{ 1
R2

(R̂ − �β)(1− β2)

(1− R̂ · �β)3
}

ret

c �B =
{
R̂ × �E

}
ret

,

where �Ev is the velocity field, and the accelera-
tion field �Ea is given in a later problem. Here �r is
a vector from the origin to the observer, �w(t) is a
vector from the origin to the particle, �R ≡ �r− �w,
and the subscript “ret” means that quantities
are to be evaluated at time tret = t− R/c.

Assume that �β lies in the z direction and is a
constant, so that the acceleration field vanishes.
As usual θ = cos−1 ẑ · r̂. Choose the origin of
coordinates to be the position of the particle at
t = 0. At that time, show that...
(a.)

−ctret = γ
(
γβz +

√
(γβz)2 + r2

)
;

Hint:
At t = 0,

ctret = −R = |�r − ẑβctret| .

Solve this quadratic equation for ctret and choose
the solution that yields −ctret = r when β = 0.
(b.)

R(1− R̂ · �β) = r

√
1− β2 sin2 θ ;

Hint:
Write the lhs as R− �R · �β . At t = 0, R = −ctret
(which is positive). Combining terms, you should
obtain

R(1− R̂ · �β) = −ctret(1− β2)− βz .

Substituting the result of part (a.) for ctret re-
sults in a lovely cancellation.
(c.)

�r = R(R̂ − �β) .

Hint:
Write the rhs as �R − R�β . You have already en-
countered all the ingredients you need: at t = 0,
�R = �r − �βctret and ctret = −R .

34.
Under the conditions of the previous problem,
and using the tools developed there, show that
�Ev is equivalent to Griffiths Eq. (10.68).
Hint:
Tools (b.) and (c.) from the previous problem
are sufficient.

35.
Liénard’s equation for the Poynting vector

�Sa =
1
µ0

�Ea × �Ba

arising from acceleration of a point particle of
charge q is

�Sa = (
q

4πε0
)2

ε0
c

{ R̂
R2

[ R̂ × [(R̂ − �β)× �̇
β]

(1− R̂ · �β)3
]2}

ret
.

(a.)
Show that Liénard’s equation follows directly
from the electric and magnetic fields arising
from acceleration of a point particle, using the
acceleration fields

�Ea =
q

4πε0
1
c

{ 1
R

R̂ × [(R̂ − �β)× �̇
β]

(1− R̂ · �β)3
}

ret

c �Ba =
{
R̂ × �Ea

}
ret

.

Hint:
After applying the bac− cab rule, only one term
survives.
(b.)
Suppose that the particle is in uniform motion
around a circle of radius b in the plane z = 0
centered at the origin. The motion is ultrarela-
tivistic, i.e. (1 − β2)−1/2 � 1. To lowest order,
calculate the radiated power per unit area ob-
served at (0, 0, z), where z � b.
Hint:
To an excellent approximation, R̂ is perpendic-
ular to both �β and �̇

β. This makes �Sa trivial to
evaluate.
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(c.)
Is ẑ a direction in which the power radiated per
unit solid angle is near the maximum for this
motion? Explain.
Hint:
Does the “train factor” (1− R̂ · �β)−6 provide any
enhancement at this observation point?

36.
As an intermediate step in the derivation of the
velocity and acceleration fields �Ev and �Ea, in
class we derived the expression

�E =
q

4πε0

{ 1

1− R̂ · �β
[ R̂
R2

+
d

c dt

R̂ − �β

R(1− R̂ · �β)
]}

ret

where the subscript “ret” means that the differ-
entiation should be done first, and afterward all
time-dependent quantities should be evaluated
at time tret = t− R/c.

Define �̇
β ≡ d�β/dt. Use two relations worked out

in class:
dR
c dt

= −R̂ · �β
dR̂
c dt

=
R̂ × (R̂ × �β)

R
.

With these tools, finish the derivation to obtain
�Ev (as given in an earlier problem) and �Ea (as
given in the previous problem).
Hint:
For the terms involving �̇

β , apply the bac − cab

rule in reverse. For the terms not involving �̇
β ,

apply the bac− cab rule directly to R̂× (R̂× �β) .

37.
Griffiths Problem 3.40.
Hint:
Start with the definition

qlm ≡
∫
dτ ′ρ(�r ′)r′l Y ∗

lm(θ′, φ′)

of the multipole moments. A line charge is
azimuthally symmetric, causing the m �= 0 mo-
ments to vanish since

∫
dφ eimφ = 0 .

For a line charge along the z axis,
∫
ρ dτ ′ reduces

to
∫
λ dz .

38.
The electrostatic potential created by a static
point charge can take a nontrivial form when the
coordinate system is chosen to have an origin
which, for some other reason, must be centered
at point that does not coincide with the charge’s
position.

This problem concerns the potential V (�r ) cre-
ated by a localized charge distribution ρ(�r ′).
With the observation point located outside the
charge distribution (r > r′max), use the standard
expansion in spherical harmonics

ε0V (r, θ, φ) =
∞∑

l=0

+l∑
m=−l

Ylm(θ, φ)
(2l + 1)rl+1

qlm ,

where the multipole moments qlm are defined in
the hint for the previous problem. In spheri-
cal polar coordinates, consider a point charge e
located at (r′, θ′, φ′) with respect to a certain ori-
gin. Determine the electrostatic potential that
it creates at an observation point (r, θ, φ), with
r > r′max.
(a.)
Write down the exact value of V(r, θ, φ, r′, θ′, φ′)
as an infinite sum over l and m.
Hint:
The charge distribution for a point charge is a
delta function that trivializes the qlm integral.
Compare your result to the expression in your
lecture notes for the expansion in spherical har-
monics of 1/|�r − �r ′|.
(b.)
Explicitly evaluating the spherical harmonics as
functions of θ and φ (or θ′ and φ′), write down
all the monopole, dipole, and quadrupole terms
(l = 0, 1, and 2).
Hint:
Explicit spherical harmonics are found in your
lecture notes, in Jackson (p. 109), and in the
Particle Physics Booklet (p. 266 in the 2002
edition). Note that

Yl −m = (−1)mY ∗
lm .
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39.
Arrange five finite point charges at five differ-
ent positions so that all l ≤ 4 moments of the
charge distribution vanish, except for the zzzz
component of the hexadecapole moment

q40 ≡
∫
dτ ′ρ(�r ′)r′4Y ∗

40(θ
′, φ′) .

Hint:
As noted in an earlier hint, the m �= 0 moments
vanish if the charge distribution is cylindrically
symmetric about the z axis; for point charges
this can be accomplished only by placing the
charges on the axis. The m = 0, l = odd mo-
ments vanish if the charge distribution is even
in z. Place four charges away from the origin to
cancel the m = 0 quadrupole (l = 2) moment;
place a fifth charge at the origin to cancel the
monopole (l = 0) moment.

40.
Consider the dimensionless operator

�L ≡ 1
i�r ×∇

(apart from a missing factor of h̄, this is the
same as the angular momentum operator used
in quantum mechanics).
(a.)
In spherical polar coordinates, show that

i�L = φ̂
∂

∂θ
− θ̂

sin θ
∂

∂φ
.

Hint:
Consult Griffiths’ inside cover (gic) #1.
(b.)
Express θ̂ and φ̂ in terms of x̂, ŷ, ẑ, θ, and φ.
Hint:
Consult gic #4.
(c.)
Show that

iLz =
∂

∂φ

L± ≡ Lx ± iLy = e±iφ
(± ∂

∂θ
+ i cot θ

∂

∂φ

)
.

[L± are raising and lowering operators, which,
within a factor, change Ylm into Yl,m±1 .]

Hint:
Plug the result of (b.) into the result of (a.). To
identify Lx, Ly, and Lz, collect the terms multi-
plying x̂, ŷ, and ẑ.
(d.)
Show that

L2 = L2
z +

1
2{L+, L−} ,

where {a, b} is the anticommutator ab+ ba.
Hint:
Write down L+L− and L−L+ in terms of Lx

and Ly (remember to preserve the order of the
operators).
(e.)
Finally, show that

−L2 = r2∇2
ang ,

where ∇2
ang is the part of ∇2 which involves

derivatives in θ and φ.
Hint:
Plug the results of (c.) into the result of (d.).
Consult gic #1.

41.
Starting from the orthonormality of the spherical
harmonics,

∫
dΩY ∗

l′m′(θ, φ)Ylm(θ, φ) = δll′δmm′ ,

and using the properties of �L established in the
previous problem, prove that the vector spherical
harmonics

�Xlm(θ, φ) ≡ �LYlm(θ, φ)

satisfy the normality condition

∫
dΩ �X∗

l′m′(θ, φ) · �Xlm(θ, φ) = l(l + 1)δll′δmm′ .

Hint #1:
Write �L = x̂Lx + ŷLy + ẑLz and express Lx and
Ly in terms of the raising and lowering operators
L+ and L−. Use their standard properties
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L+Ylm =
√
(l +m+ 1)(l −m)Yl m+1

L−Ylm =
√
(l −m+ 1)(l +m)Yl m−1 .

Collect terms in Y ∗
l m−1Yl m−1 , Y ∗

lmYlm , and
Y ∗

l m+1Yl m+1 , and exploit the orthonormality of
each spherical harmonic. Note that δm−1 m′−1 =
δmm′ = δm+1 m′+1 .

Hint #2:
For a more elegant solution, you may use the
Hermitian conjugate �L† of the angular momen-
tum operator, defined by

∫
dΩ f∗(Ω)�L g(Ω) ≡

∫
dΩ

(
�L†f∗(Ω)

)
g(Ω) ,

where f and g are any two functions of Ω.
Because �L corresponds to a physical observable
(h̄−1 times the angular momentum), it is self-

conjugate (�L = �L†), or Hermitian.
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